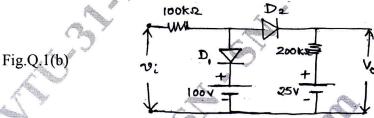
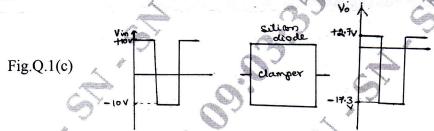
USN						
					-3	

10ES32

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Analog Electronic Circuits

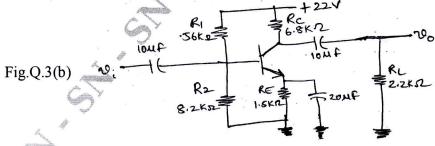

Time: 3 hrs.

Max. Marks:100


Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART – A

- 1 a. Derive the expression for dynamic resistance of the diode. Determine the dynamic resistance of the diode when the diode current is 2mA. (06 Marks)
 - b. The input voltage to the clipper circuit shown below in Fig.Q.1(b) varies linearly from 0 to 150 volts. Draw the transfer characteristics, indicate the slope and status of diode at each level. (08 Marks)

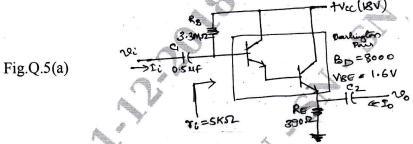

c. Design the clamper circuit for the input-output waveform shown in Fig.Q.1(c) using silicon diode. (06 Marks)

- 2 a. Derive the expression for the stability factor of the Emitter Bias circuit with respect to I_{CO} and V_{BE} . (06 Marks)
 - b. How do you find the operating point of fixed Bias circuit?

(04 Marks)

- c. Design a voltage divider Bias circuit using a silicon transistor with B = 100 when $V_{CC} = 12V$, $V_{CE} = 6V$, $I_C = 1mA$, S = 20 and $V_E = 1V$. (10 Marks)
- 3 a. Derive the expression for the current gain, input impedance, voltage gain and output impedance for CE configuration using hybrid model. (10 Marks)
 - b. Find r_e , A_I , Z_I , A_V and Z_O for the amplifier circuit shown in Fig.Q.3(b) with B = 120 and $r_o = 40 \text{K}\Omega$ (use r_e model). (10 Marks)

Determine the lower cut off frequencies f_{Li} and f_{Lo} for the circuit diagram shown in (06 Marks) Fig.Q.3(b) with $R_S = 1K\Omega$.


b. What is miller effect? Explain.

(06 Marks)

c. Determine the upper cut off frequencies fHi and fHo also fB and fT for the circuit shown in Fig.Q.3(b) given $C_{\pi}(C_{be}) = 36 \text{ pF}$, $C_{u}(C_{bc}) = 4 \text{pF}$ $C_{ce} = 1 \text{pF}$ $C_{wo} = 8 \text{pF}$ $C_{wi} = 6 \text{pF}$.

(08 Marks)

Calculate Z_i, A_i, A_v and Z_o of the Darlington pair shown in Fig.Q.5(a). Derive the formulas 5 (08 Marks) used.

What are the merits of feedback? What are different types of feedback connections?

(06 Marks)

Derive the expression for $A_{\rm f}$, $Z_{\rm if}$ and $Z_{\rm of}$ for voltage shunt feedback circuit.

(06 Marks)

Explain the classification of power amplifiers.

(04 Marks)

- b. Explain how the efficiency of class A amplifiers increases from 25% to 50%. When we use transformer coupling.
- c. A class B power amplifier is delivering an output voltage of 10 volts peak to a 8Ω load. If the dc power supply is 30 volts, calculate:
 - DC power input i)
 - AC power delivered to the load ii)
 - Conversion efficiency
 - Power dissipated in the collector of each transistor.

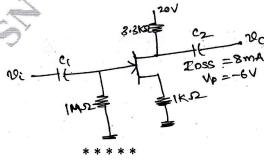
(08 Marks)

- Derive the expression for frequency of oscillation of transistor phase shift oscillator. What is the value of current gain required for the loop gain to be greater than unity?
 - With a neat circuit diagram, explain the working of the Hartley oscillator. Calculate the frequency of oscillation for C = 250 PF, $L_1 = 1.5$ mH, $L_2 = 1.5$ mH and M = 0.5 mH.

(10 Marks)

Write the ac equivalent model of JFET? Explain. 8

(04 Marks)


b. Derive the expression for Z_i, Z_o, and A_v for common source JFET amplifier with fixed bias. (06 Marks)

c. For the JFET amplifier shown in Fig.Q.8(c), the operating point is $V_{GSQ} = -2.6V$ and $I_{DQ} = 8mA$ with $I_{DSS} = 8mA$ and $V_P = -6V$. The value of Y_{OS} is given as $20\mu S$ determine: iv) calculate zo with and without rd iii) z_i i) g_m

without rd.

v) calculate A_v with and (10 Marks)

2 of 2